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1 Motivation

Given a graph G, we define its girth, denoted as g(G), as the minimum length of a cycle in G.
Here we assume that cycles are simple, that is, they do not repeat edges or vertices. If G does
not contain any cycles, we may set g(G) := +∞. 1

Finding graphs with high girth it’s easy (for example, we can take Cn, the cycle graph with n
vertices, which has g(Cn) = n). However, the question becomes much more interesting once we
impose that the resulting graph must be k-regular (i.e. all vertices must have k neighbours).
For k = 2, one can still use the graph Cn as an example, but as soon as k ≥ 3, it becomes
exceedingly complicated to explicitly construct a graph with high girth.

(a) A graph with girth 3 (b) A 3-regular graph with girth 5

In the previous class we saw that the girth of a k-regular graph, for k ≥ 3, is at most logarithmic
in terms of the number of vertices:

g(G) ≤ 2 logk−1

(
|V (G)|

)
+O(1)

where the asymptotic notation O(1) refers to the limit when |V (G)| → ∞.

It is not known if this bound can be reached, but it has been shown that we can attain a similar
bound in which we substitute the 2 in front of the logarithm by a smaller factor. More concretely,
we aim to find a family of graphs {Gn}n≥1 which is growing (i.e. |V (Gn)| → ∞ as n → ∞), and
such that g(Gn) ≥ (1 + o(1))C logk−1

(
|V (G)|

)
for a certain constant C > 0.

1That will not matter though for our set-up, since all k-regular graphs have at least one cycle, provided k >= 2.

1



As early as 1963, Erdös and Sachs proved that there existed one such family for C = 1, but their
methods were non-constructive, so they could not construct a family of graphs that exhibited
this behaviour. Twenty years later, in 1982, Margulis gave the construction for k = 4 that we

will explain today, which achieves a weaker constant of C =
2

3 log3(1 +
√
2)

∼= 0.831 but has an

explicit and simple construction. The same idea could also be adapted for other values of k,
though with a smaller constant.

In 1983, Biggs and Hoare improved this to C = 4/3, but only for the case of cubic graphs
(i.e. k = 3). This was extended in 1988 to arbitrary k by Lubotzky, Phillips and Sarnak, in
their celebrated construction of the so-called Ramanujan graphs, which not only have high girth,
but also exhibit lots of interesting expanding and spectral properties. This bound remains the
best-known to date for general values of k.

2 Description of the construction

In order to properly state the construction given by Margulis, we must first introduce some
group theory background:

Definition 2.1. Given a group G, we say that a subset of elements S ⊆ G is symmetric if, for
any x ∈ S, we have that x−1 ∈ S.

Definition 2.2 (Cayley graph). Given a group G (which may be infinite) and a finite and
symmetric subset S ⊆ G, we define the Cayley graph G(G,S) as the graph that has one vertex
for every element of the group (i.e. V (G) := G) and that has an edge between x, y ∈ G if there
exists an s ∈ S such that y = xs.

Remark. The symmetry condition on S is required so that the graph we obtain is undirected.
Indeed, according to the definition, we have that (x, y) ∈ E(G) if there exists an s ∈ S such that
y = xs. That implies that x = ys−1 so, in order to have edge (y, x) in the graph too, we need
s−1 ∈ S.

We can see some examples of Cayley graphs in figure 2. Note that taking different sets S can
greatly affect the shape of the graph, even if the underlying group is the same.

The construction will be the Cayley graph of a certain group of matrices:

Definition 2.3. The special linear group of degree n over a field K, denoted by SLn(K), is the
group of n× n matrices with coefficients on K which have determinant 1. The group operation
is defined to be matrix multiplication.

We will work with the following two particular cases:

• SL2(Fq) :=

{(
a b
c d

)
: a, b, c, d ∈ Fq, and ad− bc = 1

}

• SL2(Z) :=
{(

a b
c d

)
: a, b, c, d ∈ Z, and ad− bc = 1

}
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(a) Cayley graph with G = Z/6Z and S = {1, 5}
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(b) Cayley graph with G = Z/6Z and S = {3}

Figure 2

Recall that, for q a prime power, Fq is the unique finite field with q elements.

We are now finally ready to describe the construction of Margulis:

Theorem 2.4. For an odd prime p, let Gp := G(SL2(Fp), Sp), where Sp := {A,A−1, B,B−1}
and

A :=

(
1 2
0 1

)
, B :=

(
1 0
2 1

)
.

Then, {Gp}p is a growing family of 4-regular connected graphs with girth

g(Gp) ≥
1

3 log3(1 +
√
2)

log3(|V (Gp)|) +O(1)

We delay the proof of the girth until later, since it requires additional tools, but we already
know enough to prove the 4-regularity and the connectedness:

Lemma 2.5. For an odd prime p, Gp is 4-regular and connected.

Proof. Let us first prove the graph is connected. We claim that the Cayley graph is connected
if, and only if, the set S generates the whole group. For the forward implication, if the graph
is connected then there’s a path that goes from the identity matrix 1 to an arbitrary matrix
X ∈ SL2(Fp). By the definition of the Cayley graph, moving along an edge is equivalent to
multiplying by an element from Sp. Thus, for any X ∈ SL2(Fp) there is a finite sequence
s1, . . . , sk ∈ Sp such that 1 · s1 · s2 · · · sk = X, and hence X ∈ ⟨Sp⟩.

For the backwards implication, if ⟨Sp⟩ = SL2(Fp), then for any X,Y ∈ SL2(Fp), X
−1Y ∈ ⟨Sp⟩,

so there exist s1, . . . , sk ∈ Sp such that s1 · s2 · · · sk = X−1Y . Then, we can get from vertex X
to vertex Y of the graph by the path given by the edges labelled with s1, s2, . . . , sk. That means
that there exists a finite path connecting every pair of vertices, so the graph is connected.

Using that, we only need to show that Sp generates the whole group. Note that the powers of
A and B take the following form:

A±k =

(
1 ±2k
0 1

)
, B±k =

(
1 0

±2k 1

)
,
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The coefficients of the matrices are taken modulo p, which is odd, so we can get any triangular
matrix with 1’s at the diagonal:

(
1 b
0 1

)
=

(
1 1
0 1

)b

=

((
1 2
0 1

) p+1
2

)b

= A( p+1
2 )b

(
1 0
c 1

)
=

(
1 0
1 1

)c

=

((
1 0
2 1

) p+1
2

)c

= B( p+1
2 )c

Then, we construct a general matrix the following way:(
a b
c d

)
=

(
1 a−1

c
0 1

)(
1 0
c 1

)(
1 d−1

c
0 1

)
The equality can be easily verified by multiplying the matrices and then using that ad− bc = 1,
so b = ad−1

c . However, the above construction fails if c = 0 (because then it has no inverse in Fp,
so we can not divide by it). To circumvent this issue, note that if c = 0 then d ̸= 0 (otherwise
the determinant would be 0). Therefore, we can express a matrix with c = 0 as a product of
matrices with c ̸= 0, and we apply the previous construction to those:(

a b
0 d

)
=

(
a+ b b
d d

)(
1 0
−1 1

)
We have shown how to get a general matrix from multiplying elements from Sp, so that completes
the proof of the connectedness. It remains to show that the graph is 4-regular, but that is much
simpler. Notice that a Cayley graph is |S|-regular by definition, since multiplying to the right
by two different elements can not give us the same result (we are in a group, so every element
has an inverse). The 4 matrices A,A−1, B, B−1 are different in any Fp, because if we take two
of these matrices and make the difference between each pair of corresponding coefficients, we get
at least one of the following differences: 2,−2, 4,−4, none of which divisible by an odd prime.
Hence, any vertex in Gp has |Sp| = 4 neighbors.

It only remains to prove that the Gp have high girth. In order to do so, we will need to introduce
some algebraic tools.

3 Free groups and the ping-pong lemma

Definition 3.1. Let G be a group, with generating set S. A word on G (with respect to S) is a
finite product of elements from S. That is, a word is an expression of the form w = g1g2 . . . gt,
where t ≥ 1 and gi ∈ S for all i ∈ [t].

We say that a word is reduced if there are no two consecutive elements which cancel each other
(i.e. one of which is the inverse of the other).

We say that a group G is free with basis S, if there is no reduced word that is trivial (i.e. equal
to 1).
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Intuitively, a group is free if there is no way to multiply several elements to get 1 unless they
directly cancel by pairs of inverses. For example, SL2(Fq) is not free with respect to the basis
S = {A,B,A−1, B−1}, since we have the trivial reduced word w = A ·A · · ·A︸ ︷︷ ︸

p times

= 1.

However, if we do not consider reduction modulo p, the resulting subgroup is indeed free:

Lemma 3.2. The subgroup ⟨A,A−1, B,B−1⟩ ≤ SL2(Z) is free with respect to the basis S =
{A,A−1, B,B−1}.

Proof. The proof is based on a method called the Ping-Pong Lemma, though we will not state
it in full generality because it would require further background in group theory, which is not
necessary for this particular application.

The idea is to consider the elements of our group, which are 2× 2 matrices, as linear operators
on the vector space R2. Consider the following two subsets of R2:

X :=

{(
x
y

)
∈ R2 : |x| > |y|

}
Y :=

{(
x
y

)
∈ R2 : |x| < |y|

}
Observe that multiplying by a power of A moves the vectors from Y to X, while multiplying by
a power of B moves the vectors from X to Y . More formally, we have that for any k ̸= 0 and
for any v ∈ Y , Akv ∈ X, and analogously, for any v ∈ X, Bkv ∈ Y . We will only prove the first
claim, as the second one follows by an analogous argument.

Let k ̸= 0 and let v = (x, y)T ∈ Y (that is, |y| > |x|). Then,

Aky =

(
1 2k
0 1

)(
x
y

)
=

(
x+ 2ky

y

)
And, using the triangular inequality,

|x+ 2ky| ≥ |2ky| − |−x| = 2 |k| |y| − |x| > (2 |k| − 1) |y| ≥ |y|

Hence, Akv ∈ X.

Why are these claims useful? Suppose we have a reduced word w, which we will suppose for
now that starts and ends with a power of A. Then, the word has the form w = Ak1Bk2 . . . Akt ,
where t ≥ 1 and k1, . . . , kt ̸= 0. If the word is trivial (i.e. w = 1), then Ak1Bk2 . . . Aktv = v for
any v ∈ R2. However, suppose we take v ∈ Y . By the previous claims we have:

v ∈ Y

Aktv ∈ X

Bkt−1Aktv ∈ Y

Akt−2Bkt−1Aktv ∈ X

...

Ak1Bk2 · · ·Akt−2Bkt−1Aktv ∈ X
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Hence, starting from a v ∈ Y we end up with Ak1Bk2 . . . Aktv ∈ X. If the word was trivial, then
we would have both v ∈ X and v ∈ Y , which is impossible, since X and Y are disjoint, so we
reach a contradiction.

This last argument proves that no reduced word starting and ending with a power of A can be
trivial. The cases in which the reduced word does not start or end with a power of A can be
easily reduced to this case by conjugating by an appropriate power of A. Indeed, take k ̸= 0
such that |k| ̸= |k0| and |k| ̸= |kt|. Then, consider the word w̃ := AkwA−k. It’s easy to see
that w̃ = 1 ⇐⇒ w = 1, and that (after cancelling out everything that can be cancelled out) w̃
reduces to a reduced word which starts and ends with a power of A. Therefore, by the previous
result w̃ ̸= 1, and hence w ̸= 1.

4 Matrix norms

The final ingredient we will need in the proof is some properties of matrix norms.

Definition 4.1. Let || · || be the usual Euclidean norm for vectors of R2. Then, given a real
matrix T ∈ M2×2(R), we define its operator norm as

||T || := sup
v ̸=0

||Tv ||
|| v ||

Intuitively, the operator norm ||T || measures how much we can lengthen a vector v ∈ R2 by
applying T , in terms of the original length of v.

Lemma 4.2. Let T ∈ M2×2(R). The operator norm satisfies the following properties:

1. For all v ∈ R2, ||Tv || ≤ ||T || · || v ||

2. For all other T̃ ∈ M2×2(R), ||T T̃ || ≤ ||T || · || T̃ ||

3. ||T || = ||T t ||

4. ||TT t || = ||T ||2

5. ||T || ≥ max
i,j

|Tij |

6. If T is symmetric, then ||T || = max
λ∈Spec(T )

|λ|

Proof.

1. If v = 0, then both sides are zero, so the inequality is satisfied. Otherwise,

||Tv ||
|| v ||

≤ sup
w ̸=0

||Tw ||
||w ||

= ||T ||
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2. Using the previous one, we have:

||T T̃ || = sup
v ̸=0

||T T̃ v ||
|| v ||

≤ sup
v ̸=0

||T || · || T̃ v ||
|| v ||

= ||T || · || T̃ ||

3. Using Cauchy-Schwarz, we have that

||T tv ||2 = vtTT tv ≤ || v || · ||TT tv || ≤ || v || · ||T || · ||T tv ||

Hence, ||T tv || ≤ ||T || · || v ||. Now, plugging that into the definition of ||T t || we obtain

||T t || = sup
v ̸=0

||T tv ||
|| v ||

≤ ||T ||

Then, by symmetry, we also have that ||T || = || (T t)t || ≤ ||T t ||, so ||T || = ||T t ||.

4. Using 2 and 3, we have that ||T tT || ≤ ||T t ||||T || = ||T ||2. For the reverse inequality, we
use Cauchy-Schwarz and 1:

||T ||2 = sup
v ̸=0

||Tv ||
|| v ||

= sup
v ̸=0

vtT tTv

|| v ||2
≤ sup

v ̸=0

|| v || · ||T tTv ||
|| v ||2

≤

≤ sup
v ̸=0

|| v || · ||T tT || · || v ||
|| v ||2

= ||T tT ||

5. Let ei be the i-th vector of the canonical basis. Then, note that etiTej = Tij . Therefore,
for all i, j ∈ {1, 2},

|Tij | =
∣∣etiTej∣∣ ≤ || ei || · ||Tej || = ||Tej || ≤ ||T || · || ej || = ||T ||

6. Let λ be an eigenvalue of T , with eigenvector v. Then,

||T || = sup
w ̸=0

||Tw ||
||w ||

≥ ||Tv ||
|| v ||

=
||λv ||
|| v ||

= |λ|

Hence, ||T || ≥ max
λ∈Spec(T )

|λ|. To prove the converse, we use that since T is symmetric there

exists an orthonormal basis of eigenvectors {u1, u2}. Therefore, for any v ∈ R2 there exist
α1, α2 ∈ R such that α1u1+α2u2 = v. Using that basis, we can express the operator norm
as:

||T || = sup
v ̸=0

||Tv ||
|| v ||

= sup
α1,α2∈R

α1u1+α2u2 ̸=0

||T (α1u1 + α2u2) ||
||α1u1 + α2u2 ||

= sup
α1,α2∈R

α1u1+α2u2 ̸=0

||α1λ1u1 + α2λ2u2 ||
||α1u1 + α2u2 ||

Now, note that for any c1, c2 ∈ R we have that || c1u1+c2u2 || =
√

(c1u1 + c2u2)t(c1u1 + c2u2) =√
c21 + c22, using the orthonormality of the basis. Hence,

||T || = sup
α1,α2∈R

α1u1+α2u2 ̸=0

√
α2
1λ

2
1 + α2

2λ
2
2√

α2
1 + α2

2

≤ sup
α1,α2∈R

α1u1+α2u2 ̸=0

max{|λ1| , |λ2|} ·
√

α2
1 + α2

2√
α2
1 + α2

2

=

= max{|λ1| , |λ2|}
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With the previous properties, it is now easy to compute the norm of A, A−1, B and B−1. First,
note that by property 4, ||A || =

√
||AtA ||. By a simple computation, we find that AtA has

characteristic polynomial x2− 6x+1, which has roots x = 3±
√
8, which will be the eigenvalues

of AtA. Therefore, using property 6, we have that ||A || =
√
3 +

√
8 = 1 +

√
2. Since B = At,

by property 3 it has the same norm, and similarly one can find that A−1 and B−1 also have
norm 1 +

√
2.

5 Finishing up the proof

We want to show that the family of graphs we constructed have no short cycles. Fix an odd
prime p, and let v1v2 . . . vg be a simple cycle (i.e. with no repeated vertices) of length g in the
graph Gp.

By definition ofGp, two verticesX and Y are adjacent if there exists a matrixM ∈ {A,A−1, B,B−1}
such that Y = XM . Thus, taking the corresponding matrix from each edge of the cycle, we
obtain a sequence of g matrices M1, . . . ,Mg ∈ {A,A−1, B,B−1} such that X = XM1M2 . . .Mg

for a certain X ∈ SL2(Fp). Multiplying by X−1, we obtain that

M1M2 . . .Mg = 1

Besides, note that no two adjacent matrices in this product can be the inverse of one another,
as that would correspond to going through the same edge twice in a row (which is forbidden in
a simple cycle). Hence, the above is a trivial reduced word in SL2(Fp).

Now comes the key idea of the proof. Lift the above product to SL2(Z) (i.e. consider the same
product of matrices but now in the integers, without taking modulo p). We saw in Lemma 3.2
that ⟨A,A−1, B,B−1⟩ is a free subgroup of SL2(Z), so no reduced word written with these 4
matrices can be trivial. Hence, M1M2 . . .Mg ̸= 1 in SL2(Z).

That means that one of the coefficients of M1M2 . . .Mg is equal to 1 (or 0) in Fp but not in Z. If
it was one of the diagonal coefficients, then that would mean that it is of the form kp± 1, with
k ̸= 0, so its absolute value would be at least |kp± 1| ≥ p− 1. If it was one of the off-diagonal
coefficients, then that would mean that it is of the form kp, with k ̸= 0, so its absolute value
would be at least |kp| ≥ p.

In any of the two cases, we have that the matrix M := M1 . . .Mg has ||M || ≥ max
i,j

|Mij | ≥ p−1.

On the other hand, we saw that each of the matrices Mi ∈ {A,A−1, B,B−1} have norm ||Mi || =
1 +

√
2, so

||M || = ||M1 . . .Mg || ≤ ||M1 || · · · ||Mg || = (1 +
√
2)g

Putting both bounds together, we obtain that

p− 1 ≤ ||M || ≤ (1 +
√
2)g
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Then, taking log3 at both sides we obtain the desired lower bound on the girth:

1

log3(1 +
√
2)

log3 (p− 1) ≤ g

To write it in terms of the number of vertices of the graph, we recall from the previous class that
|V (Gp)| = |SL2(Fp)| = (p2 − 1)p ≤ (p− 1)3/4. Therefore, log3(|V (Gp)|) = O(1) + 1

3 log3(p− 1),
so we obtain the following bound:

1

3 log3(1 +
√
2)

log3(|V (Gp)|) +O(1) ≤ g(Gp)

Remark. We can slightly alter the previous argument to achieve the better constant C =
2

3 log3(1+
√
2)
. The idea is that we break the product M1 . . .Mg = 1 into two parts, so that

M1 . . .Mg/2 = M−1
g/2+1 . . .M

−1
g

Here we have supposed by simplicity that g is even, but the same argument would work for g
odd. Therefore,

M1 . . .Mg/2 −M−1
g/2+1 . . .M

−1
g = 0

Using the same freeness argument as before, we get that one of the coefficients of the matrix in
the left-hand-side must be 0 in Fp but not in Z. Hence,

p ≤ ||M1 . . .Mg/2 −M−1
g/2+1 . . .M

−1
g || ≤ ||M1 . . .Mg/2 ||+ ||M−1

g/2+1 . . .M
−1
g ||

By the pidgeonhole principle, one of the terms on the right must be at least p/2. Assume it is
the first one (it does not matter for what follows). Then,

p

2
≤ ||M1 . . .Mg/2 || ≤ (1 +

√
2)g/2

so, taking logarithms on both sides,

1

3
log3(|V (Gp)|) +O(1) ≤ g

2
log3(1 +

√
2)

and rearranging:

g ≥ 2

3 log3(1 +
√
2)

log3(|V (Gp)|) +O(1)
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